Decomposing Weighted Graphs

نویسنده

  • Amir Ban
چکیده

We solve the following problem: Can an undirected weighted graph G be partitioned into two non-empty induced subgraphs satisfying minimum constraints for the sum of edge weights at vertices of each subgraph? We show that this is possible for all constraints a(x), b(x) satisfying dG(x) ≥ a(x) + b(x) + 2WG(x), for every vertex x, where dG(x),WG(x) are, respectively, the sum and maximum of incident edge weights.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposing Graphs with Symmetries

While decomposing graphs in simpler items greatly helps to design more efficient algorithms, some classes of graphs can not be handled using the classical techniques. We show here that a graph having enough symmetries can be factored into simpler blocks through a standard morphism and that the inverse process may be formalized as a pullback rewriting system.

متن کامل

Minimum rainbow H-decompositions of graphs

Given graphs G and H, we consider the problem of decomposing a properly edge-colored graph G into few parts consisting of rainbow copies of H and single edges. We establish a close relation to the previously studied problem of minimum H-decompositions, where an edge coloring does not matter and one is merely interested in decomposing graphs into copies of H and single edges.

متن کامل

AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS

An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...

متن کامل

A framework for cost-constrained genome rearrangement under Double Cut and Join

The study of genome rearrangement has many flavours, but they all are somehow tied to edit distances on variations of a multi-graph called the breakpoint graph. We study a weighted 2-break distance on Eulerian 2-edge-colored multi-graphs, which generalizes weighted versions of several Double Cut and Join problems, including those on genomes with unequal gene content. We affirm the connection be...

متن کامل

Decomposing Lie Algebra Representations Using Crystal Graphs

We use the theory of crystal graphs to give a simple graph-theoretical algorithm for determining the branching rule for decomposing a representation of a simple Lie algebra when restricted to a simple subalgebra. We also describe a computer package for determining such decomposi-tions graphically. 0.1 Introduction When modeling elementary particle interactions and symmetry breaking in physics i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2017